ISSN 2074-5893 ITumanns npuxnadnoi mamemamuxu i mamemamuynozo mooenroeanis. Bunyck 20

YK 519.8 doi: 10.15421/322015

A.V. Siriak, V.A. Turchyna
Oles Honchar Dnipro National University

ZERO-KNOWLEDGE PROOF OF KNOWLEDGE OF MULTIVARIATE
POLYNOMIAL’S ZERO

The problem of constructing a NIZK proof of knowledge of a multivariate polynomial’s
zero is considered. A previously developed method for SNARK construction based on
Quadratic Arithmetic Programs and Pinocchio protocol is adapted to solve the stated prob-
lem efficiently.

Keywords: proof of knowledge, non-interactive zero-knowledge proof, polynomial, alge-
braic equation, Pinocchio protocol, Quadratic Arithmetic Program, arithmetic circuit.

A.B. Cipsk, B.A. Typuuna

Jninpoecoxuii nayionanvnuti ynieepcumem imeni Onecs I'onuapa

JAOBEJEHHA 3 HYJIBOBUM PO3I'OJTOINEHHAM 3HAHHSA HY JIA
MHOI'OYIEHA BAT'ATHOX 3MIHHUX

B naniii crarTi po3risaaeTbes akKTyaJbHUI B HALI Yac MiAXiJ 10 mo0yA0BHM HeiHTepak-
THBHOIO JI0BeJleHHsI 3 HYJbOBUM po3roJiomenHsam (auri. Non-Interactive Zero-Knowledge
Proof). BiH BiTHOCHTBCS 10 HEKJIACHYHUX MeTOAUK JoBedeHHs. Jlanuii mixxin BUKopucrTo-
BYETBHCH /151 MOOYI0BH HEIHTEPAKTHBHOIO JOBEJACHHA 3 HYJbOBHM PO3r0JIOIICHHSM 3HAH-
HSl HYJISI MHOTO4YJIeHa 0araTtboX 3MiHHHUX, TOOTO BU3HAYEHHS N-BUMIPHOI0 YHMCJI0BOI0 BeK-
TOPpY, L0 NePeTBOPIOE 3HAYCHHS Halmepe/ 3aJaH0l MmoJiHoMianbHOI pyHkuii B Hyas. Haso-
AUTHCSA OTJISIA AesIKMX BiIOMHMX Ha JaHUIl MOMEHT MiZAX0iB 10 PO3B'si3aHH 3a1a4i mo0yn0-
BH HEIHTePaAKTHBHHUX J0Bee¢Hb 3 HYJbOBHM po3rosgomennsM. Takuii miaxiag npeacrasJsie
SIK TeOPeTHUYHHUI, TAK i MPAKTHYHMII iHTepec OCKiJILKH /I0TIOBHIOE TEOPil0 J10BeIeHHS HO-
BOI0 CXEMOI0, SIKa TAKOK 3aCTOCOBYETHCH NPH peanizanii po3noaijieHuX 004M CJII0BATbHHUX
cuctem. HaBoasitbest npukiaani cgepu, B AKMX Moske OyTH 3aCTOCOBAHMI BKa3aHUH MeTO/
noseHeHHs. /lanHa (opMajibHa IOCTaHOBKA 3aJadi, MOB'A3aHOI 3 MOOYI0BOI0 HeiHTepakK-
THBHOIO /I0Be/ICHHS 3 HYJIbOBUM PO3ro0JIOIIeHHAM. 3alIpONOHOBAHO MiaXix /10 Ti po3B'si3aH-
Hsl, 1110 0a3y€THCA HA BiAOMOMY MeTO/i MO0OYy10BM KOPOTKHX HEIHTEPAKTHBHHUX APTYMEHTIB
3HanHs (anrj. Succinct Non-Interactive Argument of Knowledge). Ile oquu 3 migxoais 1o
No0y/0BM HEIHTEPAKTHBHMX [0BeIeHb 3 HYJbOBHM PO3rojiomeHHsa. B nubomy meroai BUKo-
PHCTOBYETHCH OAUH 3 0ararbox A00pe PO3BHHEHUX, JOCJTIIKEHMX Ta 3PYYHHX CIOCOOIB
NnpeacTaBJeHHs 00YMCIIOBAIBHHUX 3aJa4, a caMe, TaK 3BaHI KBaJpaTH4HI apu(MeTHYHI
nporpamu. Takox BUKOpHCTOBYEThCSI NPOTOKOJ IliHOKKIO, ananToBaHuil 1J1s1 e()eKTHBHO-
ro po3B'si3aHHA 3a1a4i MO0Yy10BH HEiHTEPAKTHBHOIO J0BeCHHS 3 HYJbOBHM PO3I0JIOLICH-
HSIM 3HAHHS HYJIs noJdiHoMianabHOI GpyHKuil. IIporokon IliHoKkKio 103BOJIsIE €)eKTUBHO Ie-
PeBIpATH y3arajibHeHi 004HCJIeHHs, 0a3yl0UHCh JIMIIEe HA KPUNTOrpagiyHuX NpPHIyLIeH-
HAX 1010 CKJIAAHOCTI PO3B'AI3aHHA 32124l 3HAXOIKEHHS M CKPETHOI0 Jorapupmy.

Kaio4oBi ciioBa: 1oBeleHHsI 3HAHHSI, HeiHTePAKTHBHE 10BeIeHHS 3 HYJbOBHM Ni3HAaH-
HSIM, MHOTO4JI€eH, ajJredpaiyHe piBHsHHSA, NpoToKoJ IliHokkio, kBagpaTuyHa apudmeTHy-
HA nmporpama, apugMeTH4Ha cXema.

© Cupsix A.B., Typuuna B.A., 2020

153

ISSN 2074-5893 ITumannsa npuxnadunoi mamemamuxu i mamemamuinoco mooemosanns. Bunyck 20

A.B. Cupsk, B.A. Typunna

Hnunposckuii hayuonanvhulil ynusepcumem umenu Onecs I'onuapa

JOKA3ATEJIBCTBO C HYJIEBBIM PA3I'JTAINIEHUEM 3HAHUSA HYJIA
MHOTI'OYWIEHA MHOI'MX TIEPEMEHHbIX

PaccmoTrpena npo0iieMa nocTpoeHHs] HEMHTEPAKTHBHOIO 10KA3aTEJbCTBA C HYJIEBBIM
pasriuamenueM (NI1ZK) 3HaHust HyJ 11 MHOTO4YJIeHa MHOTHX IlepeMeHHbIX. PazpaboTranHbiii
paHee MeTOJ MOCTPOEHUSI KPATKHUX HEeMHTEePaKTUBHBLIX aprymeHToB 3HaHusi (SNARK) na
OCHOBE KBaJPaTH4YHBIX apupMeTHYeCKUX NMPOrpaMM U nporokoja IIMHOKKHMO axanTupo-
BaH 1S 3P PeKTUBHOIO pelieHusi MOCTABJIECHHOM 3a/1a4H.

KuroueBble ciioBa: 10Ka3aTeIbCTBO 3HAHNUS, HEMHTEPAKTHBHOE /10KA3aTEJILCTBO C HYJIe-
BbIM pa3riialieHueM, MHOrO4YIeH, ajiredpamyeckoe ypaBHeHHe, NpoTokoJ IInHokkwmo,
KBaJpaTnyeckasi apudmernyeckas nporpamma, apugpMeTudeckas cxema.

Introduction. One of many fields where researchers have made a lot of progress
recently is a field of verifiable computations. The main problem under considera-
tion in those papers is a problem of verifiable computations, namely outsourcing
computations for one or another reason with the ability to verify the correctness of
results as they arrive. One may want to do this for many reasons, some of which
are: inability to perform computations on low power and/or low memory devices
(e.g. cellphones, watches, laptops, tablets, etc.) because of speed and/or memory
constraints and volunteer computing [1] (e.g. Berkeley Open Infrastructure for
Network Computing, a distributed infrastructure for network computing based on a
centralized server that distributes tasks and thus coordinates volunteer computer
resources).

This project allows to outsource computations, but they are performed multiple
times to ensure correctness, which is, obviously, less than optimal) or lack of re-
sources to perform computations in-house. In any of the cases discussed above,
computations can be outsourced to mainframes, personal computers or
smartphones depending on the desired outcome and goal in mind.

Though this paper is not about verifiable computations in their pure form, it
takes a closer look at zero-knowledge proofs in the context of verifiable computa-
tions. Namely, this paper’s main concern is to prove that one knows a zero of a
multivariate polynomial without exposing the zero. It’s easy to see a link between
zero-knowledge proofs and verifiable computations and, indeed, those fields are
tightly coupled and very often techniques invented for use in one of them bring
new developments in another. This paper is not an exception, but a confirmation to
the rule as it dives into both of the fields to gain inspiration and state-of-the-art
tooling to deal with problems in hand. It takes what’s good and synthesizes a new
method based on existing approaches.

Formal problem statement. Let F = {0,1,..., p —1} be a finite field of integers

modulo p with usually defined operations of addition and multiplication modulo p,
namely:

154

ISSN 2074-5893 ITumanns npuxnadnoi mamemamuxu i mamemamuynozo mooenroeanis. Bunyck 20

a+b=(a+b)mod p;
ab=(ab)mod p.

Let us define the following field:

— { (Xl,X2 ey X,),Xi = Fp ’i :L_n})
In Fpn operations are defined component-wise as follows:

(a+b) =(a +b)mod p;
(ab) =(ab)mod p,i=1n.

Let us also define the following map (1) that is a polynomial function:
PR —>F,; (1)

P(x) = Z z Z 8,0 o XX2 X,

=0p,=0 p =0 ()

n —_ T —
X e FICJ v X=X Xy e X), X € Fp,l =1n.

Two parties, Peggy and Victor, are required and it is supposed that Peggy knows a
zero of polynomial P, i.e. Peggy knows a solution x°=(x?,xs ...,.x°) to the follow-
ing algebraic equation:

P(x)=0.
As function P is a function of multiple variables, finding an extremum of it doesn’t

pose any difficulties, namely one needs to check all the points where
dP(x) _

=0, by which we mean VP(x)=0, as xis a vector.

On the other hand, finding zeroes of P poses quite challenging, as those points
don’t have any special properties that may help to find them. Taking that into ac-

count, knowledge of x°=(x’,x5,...,x°) such that P(x°)=0 is valuable and worth
proving.

So, the following conditions are given:

1. Peggy and Victor both know some (but same for both) P from (2).

2. Peggy knows x%:P(x°)=0

3. Peggy wants to prove Victor her knowledge of x° without revealing any in-
formation regarding x° .

155

ISSN 2074-5893 ITumannsa npuxnadunoi mamemamuxu i mamemamuinoco mooemosanns. Bunyck 20

Proposed algorithm. Here are all the steps of an algorithm that proves the fact
that x°=(x2,x3,...,x°) is indeed a zero of polynomial P without revealing x° or

any other additional knowledge. Such an approach was first used for SNARK
construction in [4], but, as we shall see soon, it can be adapted to solve our
problem in hand.
Algorithm steps:

Convert polynomial P to an arithmetic circuit.

Reduce the arithmetic circuit to a quadratic arithmetic program.

Using Pinocchio protocol, prove Victor that Peggy knows a satisfying assign-

ment to the QAP such that the last element of the assignment is 0.

Now let’s take a closer look at each step of the algorithm and see how existing
methods from multiple disciplines interplay to help us solve this, at first glance,
unsolvable problem.

Convert polynomial P to an arithmetic circuit. First, let’s state the following.
Definition 1 [8]. An arithmetic circuit is a rooted, directed acyclic graph whose
leaves are numeric constants or variables, and whose interior nodes, which are
called gates, are addition and multiplication operations. The value of the function
for an input tuple is computed by setting the variable leaves to the corresponding
values and computing the value of each node from the values of its children,
starting at the leaves.

We are interested only in arithmetic circuits that include multiplication and addi-
tion, as it’s enough to represent evaluation of any polynomial.

Any method of evaluation can be used here, but schemas that minimize the total
number of operations that need to be performed and, hence, the size of the result-
Ing circuit, are preferred.

Though the main reason to use arithmetic circuits in this paper is because of
ability to transform multivariate polynomial evaluation into a polynomial of one
variable using Quadratic Arithmetic Programs later, they can be utilized in a multi-
tude of ways, some of which are identity testing, degree computation, and polyno-
mial equivalence testing. Those and other algorithms on arithmetic circuits are dis-
cussed and analyzed in depth in paper [7].

Suppose the following polynomial function is given:

P(X) =3% + XX, .

Then, the corresponding arithmetic circuit is shown on fig. 1.

Reduce the arithmetic circuit to a quadratic arithmetic program.

In [9] an idea of using polynomials next to arithmetic circuits was first proposed.
More than 20 years later, it received further development and in [6] a method of
conversion of an arithmetic circuit into a Quadratic Arithmetic Program, which is
used here, was proposed. This method makes use of polynomials and their proper-
ties to transform computations represented by an arithmetic circuit into polynomial
with some very special properties.

156

ISSN 2074-5893 ITumanns npuxnadnoi mamemamuxu i mamemamuynozo mooenroeanis. Bunyck 20

3X1+X1 X2

Fig. 1. An example of an arithmetic circuit

That polynomial is used later in the Quadratic Arithmetic Program to prove
specific statements about the computations used to create the arithmetic circuit in
the first place.

To use the proposed method, we first need to name wires and gates in our arith-
metic circuit in a particular way. Almost all wires and almost all gates are associat-
ed with a moniker that is used later when we need to refer to a wire or a gate. The
general schema will be explained in great detail later, but for now, let’s take a look
at fig. 2, which depicts our example arithmetic circuit with all required wires and
gates labeled properly.

By w,i= 1,_5 we mean “wires”, which are values that travel through our circuit,

0;,1=1,2 — multiplication gates, we don’t label addition gates and think of values
that come there as just passing through them to the next gate.

We also assume that all gates have no more and no less than 2 input wires, namely
left and right wires.

After having done all the labeling, we can begin the reduction process. For that
we first need to associate each multiplication gate with a field element and after
that define sets of left L, right R, and output O, wire polynomials, i=1,5.

An element that a multiplication gate is associated with is called a target point. We
need to define our left, right and output wire polynomials in a way such that they
are equal to zero on all target points except those associated with the corresponding
multiplication gate.

Let’s get back to our neat example. We will associate g, with 1eF, and g,

with 2e F, . We could have chosen any elements from field F;, not necessarily 1
and 2, they only need to be different from one another.

157

ISSN 2074-5893 ITumannsa npuxnadunoi mamemamuxu i mamemamuinoco mooemosanns. Bunyck 20

Because w,, w, and w, are left, right and output wires of the gate g, corre-
spondingly, we define left, right and output polynomials of that gate in the follow-
ing fashion: L =R,=0,=2-Xx.

In this way L,(1)=R,(1)=0,(1)=1+0 and L, (2)=R,(2)=0,(2)=0.

Fig. 2. Labeled arithmetic circuit

So, the polynomial we have chosen exhibits the required property of being not
equal to zero only on the field element corresponding to its multiplication gate. In
this particular case, polynomial x—2 would also suffice, so we could have chosen
it as well as the one we have chosen. This is an insight into the general form of this
polynomial.

Let us construct required polynomials in a general form.

Let G, be a set of field elements that the wire w, the one we are considering, is
connected to as a left wire.

Let G, = Fo, be a set of all other field elements.

Then L=] (x—g) - left wire polynomial corresponding to the wire w.
geGL
As we can seg, it’s indeed zero on all field elements except those the wire w is

connected to as a left wire, and not zero on all other elements. Right and output
wires are defined in a similar fashion.

Definition 2 [6]. A tuple of numbers (c,,c,.....C,).C; € Fp =1n is called a legal
assignment to an arithmetic circuit if after setting w,=c;,i=1n for all gates
W, *Wg =W, Where w_,Wg, W, - left, right and output wires of the gate according-
ly and * — gate operation.

After having finished constructing polynomials L;,R; ,Oi,izl,_n, where n is a
number of wires in our circuit, let’s define L,R,O as follows:

158

ISSN 2074-5893 ITumanns npuxnadnoi mamemamuxu i mamemamuynozo mooenroeanis. Bunyck 20

L=Zn:(:iLi (3)
R:_Zn:CiRi (4)
0=)¢0;; (5)
P=LR-O, (6)

where (c,,C,,....C,),C; € Fo.i =1,n — some assignment to the arithmetic circuit in

consideration.
Having defined this, we can state the following theorem.

Theorem 1 [6]. A tuple (c,,C,.....C,) .G € Fp,izl,_n is a legal assignment to the

circuit if and only if P vanishes on all the target points.
Definition 3 [6]. A Quadratic Arithmetic Program of degree d and size n con-

sists of polynomials L;,R,,0,,i=1,n and a target polynomial T of degree d.
Definition 4 [6]. An assignment (c,,C, ,...C,)G € F,.i =1,n satisfies a Quadratic
Arithmetic Program if target polynomial T divides polynomial P constructed by

(6).
In this terminology, Peggy wants to prove to Victor that she knows a satisfying
assignment (c,,C,,...,.C,) for the Quadratic Arithmetic Program such that the final

value in arithmetic circuit evaluation is O (i.e. ¢, =0).

Prove Victor that Peggy knows a satisfying assignment to the QAP using
the Pinocchio protocol. Let us introduce a function of a new kind:

EF, —>F,.

Let E have the following properties:
Yae Fp‘v’b e Fp:E(a+b)= E(a)+ E(b);

E(a)E(b);

Yae Fp‘v’be Fp:E(a)= E(b):>a=b.

Yae Fp‘v’b S Fp:E(ab)

There is a field that studies and may provide us with such functions. This field is
concerned with homomorphic encryption. There is a lot of effort being put in de-
veloping such functions, for example, papers [2, 10, 13] are about that.

One more fact required here is DeMillo-Lipton-Schwartz-Zippel theorem — a
tool often used in probabilistic polynomial identity testing.

Theorem 2 (DeMillo-Lipton-Schwartz-Zippel) [5, 12, 14]. Let
PeF[%,%,..X,] be a non-zero polynomial of total degree d > 0 over a field F.

159

ISSN 2074-5893 ITumannsa npuxnadunoi mamemamuxu i mamemamuinoco mooemosanns. Bunyck 20

Let S be a finite subset of F and let r,,r,,...,r, be selected at random independently
and uniformly from S. Then:

Pr[P(r,5,,...5,)=0] slg—l.

That’s a lot of gear, but now we finally have everything to construct an algorithm
that would allow Peggy to prove Victor the fact that she has a satisfying assign-
ment.

1. Peggy chooses polynomials L,R,0O,H of degree not more than d.

2. Victor chooses a random point s e F, and computes E(T (s))

3. Peggy sends Victor E(L(s)),E(R(s)).,E(O(s)).E(H(s)).
4. Victor checks that E(L(s)R(s)—0O(s))=E(T(s)H(s)).
Here is a catch in that we have to make sure Peggy chooses according to an as-

signment and not just random polynomials of degree not more than d.
Let us combine polynomials L,R,O in such a way:

F=L+x"™R+x40,

Coefficients of F are coefficients of L,R,O because L,R,O have degree not

more than d and so every addendum in polynomial x**'R has a degree more than d
and not more than 2d +1, which means that coefficients don’t mix up when we are

constructing F = L+ xR+ x2%0 .
Let us introduce a new set of functions F; :

|:i — LI +Xd+1Ri +X2(d+l)0- .

Because of the way we have constructed polynomials L,R,O in (3-5), one can
easily see that in case if F was indeed produced knowing a legal assignment, the
following equality holds:

F:Zn:ciFi.
i=1

Therefore, to check if Peggy used a legal assignment when producing polynomi-
als, Victor asks her to prove that F is a linear combination of F, . This is done in a

way we are about to describe.
Victor chooses a random peF, and sends Peggy encrypted values

E(BF,(s)).E(BFy(s))...E(BF,(s)). Then Victor asks Peggy to send him

E(BF (s)) if she sends correct value, by Knowledge of Exponent Assumption (it’s

discussed in great depth in work [3]) Victor knows that she knows how to write F
as a linear combination of F; .

160

ISSN 2074-5893 ITumanns npuxnadnoi mamemamuxu i mamemamuynozo mooenroeanis. Bunyck 20

Peggy has proven that she knows a zero of polynomial to Victor, but it’s not a
Zero-Knowledge Proof yet. For example, in case Victor has some satisfying as-

signment (¢,,C,,..,C,) he can compute corresponding L,ROH and
E(C).E(R).E(O).E(H).

If it turns out that E(L)=E(L), E(R)=E(R), E(O)=E(O) and
E(H)=E(H), then Victor knows that (;,,.....G,)=(C;,C,--.C,), Otherwise, he

knows that (€,,C, ...,) #(C,,C, --.,C,). SO, he gains additional information.

To conceal that, we will add a random “T-shift” to our polynomials. To do that,
we introduce new versions L,,R,,0,,H, of already known to us polynomials

ARl

L,R,O,H. Let 6,,5,,d; € F, and define:
L,=L+6,7;R,=R+,T;0,=0+,T.

As we’ve added a multiple of T to each polynomial, T shall still divide LR, -0, .
Let’s verify that:

L,R,-O,=(L+6,T)(R+6,T)—(0+5,T)=

-
=T(H+6,R+5,L+6,6,T —03). (")

So, defining:
H,=H+06,R+,L+06,0,T —05. (8)

Substituting (8) into (7), we get:
L,R,-O,=TH, .

Therefore, Peggy can use our brand new L,,R,,0,,H, instead of old L,R,O,H .
Those polynomials evaluated at any point will not reveal any information about
a legal assignment (c,,c,,....C,) because they are masked by random shifts.

So, we have developed a framework that allows proving that assignment satis-
fies our Quadratic Arithmetic Program and the only thing left is that the result of
arithmetic circuit evaluation should be zero (i.e. c,=0), but, fortunately, this prob-

lem was already solved in [11] using Pinocchio protocol, which produces NIZK
proof for us as well, and we won’t delve into details here.

Conclusion. The problem of constructing a NIZK proof of knowledge of a
multivariate polynomial’s zero is considered in the paper.

A previously developed by Ben-Sasson et al. method based on Quadratic Arith-
metic Programs and Pinocchio protocol is adapted to solve the problem in consid-
eration. It, for given polynomial and its zero, first transforms it into an arithmetic
circuit and after that, reduces obtained arithmetic circuit into a Quadratic Arithme-
tic Program.

161

ISSN 2074-5893 ITumannsa npuxnadunoi mamemamuxu i mamemamuinoco mooemosanns. Bunyck 20

After that, a framework is developed to prove that one knows a satisfying as-
signment to the Quadratic Arithmetic Program without revealing any additional in-
formation using the Pinocchio protocol and DeMillo-Lipton-Schwartz-Zippel theo-
rem.

The prospects for further research are to test the proposed methods on a wider
set of applied problems and to develop frameworks for solving other problems in
fields of verifiable computations and zero-knowledge proofs.

References

1. Anderson, D. SETI@home: An Experiment in Public-Resource Computing [Text] /
D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, D. Werthimer // Commun. ACM. — 2002. —
pp. 56-61.

2.Armknecht, F. A Guide to Fully Homomorphic Encryption [Text] / F. Armknecht, C. Boyd,
C. Carr, K. Gjesteen, A. Jaschke, C.A. Reuter, M. Strand // IACR Cryptology ePrint Archive.
—2015. — pp. 1192-1226.

3.Bellare, M. The Knowledge-of-Exponent Assumptions and 3-Round Zero-Knowledge Pro-
tocols [Text] / M. Bellare, A. Palacio // CRYPTO 2004: Advances in Cryptology. — 2004. —
pp. 273-2809.

4. Ben-Sasson, E. Succinct Nonlinter active Zero Knowledge for a von Neumann Architec-
ture [Text] / E. Ben-Sasson, A. Chiesa, E. Tromer, M. Virza // USENIX Association. — 2014.
— pp. 781-796.

5.DeMiillo, R. A probabilistic remark on algebraic program testing [Text] / R. DeMillo, R. Lip-
ton // Information Processing Letters. — 1978. — pp. 193-195.

6.Gennaro, R. Quadratic Span Programs and Succinct N1ZKs without PCPs [Text] / R. Gen-
naro, C. Gentry, B. Parno, M. Raykova // EUROCRYPT 2013. Lecture Notes in Computer
Science, vol 7881. — 2013. — pp. 215-274.

7. Kayal, N. Algorithms for Arithmetic Circuits. [Text] / N. Kayal // Electronic Colloquium
on Computational Complexity (ECCC). — 2010. — pp. 53-77.

8. Lowd, D. Learning Arithmetic Circuits [Text] / D. Lowd, P. Domingos // Proceedings of
the 24th Conference on Uncertainty in Artificial Intelligence. — 2012. — pp. 383-392.

9. Lund, C. Algebraic methods for interactive proof systems [Text] / C. Lund, L. Fortnow,

H.J. Karloff, N. Nisan // J. ACM. — 1992. — pp. 859-868.

10. Ogburn, M. Homomorphic Encryption [Text] / M. Ogburn, C. Turner, P. Dahal // Proce-
dia Computer Science, 20. — 2013. — pp. 502-509.

11. Parno, B. Pinocchio: Nearly Practical Verifiable Computation. Proceedings [Text] / B.
Parno, J. Howell, C. Gentry, M. Raykova // IEEE Symposium on Security and Privacy. —
2013. — pp. 238-252.

12. Schwartz, J. Fast Probabilistic Algorithms for Verification of Polynomial Identities
[Text] / J. Schwartz // Journal of the ACM (JACM). — 1980. — pp. 701-717.

13. Sen, J. Homomorphic Encryption: Theory & Applications [Text] / J. Sen // Theory and
Practice of Cryptography and Network Security Protocols and Technologies. — 2013. —
pp. 1-31.

14. Zippel, R. Probabilistic algorithms for sparse polynomials. [Text] / R. Zippel // EU-
ROSAM 1979: Symbolic and Algebraic Computation. — 1979. — pp. 216-226.

Received 25.05. 2020.

162

