BAYESIAN APPROACH TO LANDING PAGE TESTING

In this paper a Bayesian inference to conversion rate optimization is considered. Bayesian A/B/C testing methodology with the expected value of the loss function computed analytically is proposed. Bayesian A/B/C testing results are presented graphically and descriptively.

Keywords: A/B/C testing, Bayesian inference, conversion rate optimization, expected loss, landing page optimization, loss function, probability density function.

1. Introduction

Each company directs its activity to generate profit. It is important for the company to have an effective website at the time when a significant part of the target audience receives information about the products and services via the Internet. Company website must be constantly optimized to increase profit. The object of optimization is conversion rate (percent of website visitors who engage in desired target action for the website owner). A/B, A/B/C, and multivariate landing page testing are the ways to conversion rate optimization. A/B testing is an experiment of showing two variants of the landing page to website visitors at the same time and comparing which variants give more conversion actions. A/B/C testing is an experiment of showing three variants of the landing page to website visitors, and statistical analysis is used to determine which
one performs better for a given conversion aim. In multivariate landing page testing, several elements are selected on the landing page and their modifications are created. All kinds of combinations for these modified elements are further created, therefore landing page variations are generated. Website visitors are equally divided between landing page variations. A variation is suggested viewing for each visitor and visitor’s behavior is monitored. All possible combinations of page elements simultaneously are tested. It makes possible to assess the effect of each element and their interaction to conversion rate. Landing page variation (the optimal combination of elements) is selected depending on the outcome of the testing. For more details, see [1], [2], [3] and [4].

Moving away from classical hypothesis testing, like the t-test, to sequential testing developed by A. Wald [5] and by M. Girshick [6] was presented in papers [7], [8], [9], [10], [11]. The number of visitors required for landing page testing isn’t fixed in advanced, conversions are evaluated as they are collected, and testing is stopped in accordance with a predefined stopping rule as soon as the significant result is observed. But experimental design without prior information about the statistical properties of the observed random variable occurs rarely. Classical methods of unbiased estimation and maximum likelihood method don’t give insight adjusted for prior knowledge. Theory of Bayesian estimation allows combining prior information with observed random variables. The main difference between Bayesian and Frequentist approaches is that parameters of the distribution are considered as random variables in the first case and are defined as constant variables in the second one. Mathematical models of Bayesian testing were developed in [12]. The expected value of the loss function was proposed to calculate numerically and arising problems were described in this case.

In this paper Bayesian A/B/C testing implementation with the expected value of the loss function computed analytically is proposed. The paper consists of 5 sections. Section 2 is devoted to the main definitions. Posterior distributions for probabilities of success are considered. Section 3 deals with the analytical solution for expected value of the loss function. Bayesian testing implementation is described in section 4 and Bayesian testing results are discussed in section 5.

2. The posterior distribution for the probability of success

Bernoulli trials with probabilities $\theta_A, \theta_B, \theta_C$ of success are conducted in three groups of visitors (A, B, C). Probabilities $\theta_A, \theta_B, \theta_C$ of success are unknown random variables. Let $p(\theta_A), p(\theta_B), p(\theta_C)$ be the prior probability density functions for $\theta_A, \theta_B, \theta_C$, respectively. Let $p(\theta_A|x_1, x_2, \ldots, x_n), p(\theta_B|y_1, y_2, \ldots, y_n), p(\theta_C|z_1, z_2, \ldots, z_n)$ be the posterior probability density functions for $\theta_A, \theta_B, \theta_C$ given the sample vectors $x=(x_1, x_2, \ldots, x_n), y=(y_1, y_2, \ldots, y_n), z=(z_1, z_2, \ldots, z_n)$ are observed. Our goal is to find Bayesian estimators for probabilities $\theta_A, \theta_B, \theta_C$ of success concerning the loss function $L(\theta_A, \theta_B, \theta_C)$.
Bernoulli trials with two possible outcomes (success \(\{ x = 1 \} \) and failure \(\{ x = 0 \} \)) are conducted in group A of visitors. The number of successes in one trial has Bernoulli distribution with parameter \(\theta_A \):

\[
P(x, \theta_A) = \theta_A^x (1 - \theta_A)^{1-x}, \quad 0 < \theta_A < 1.
\]

The function \(\theta_A \) defined by:

\[
p(x_1, x_2, \ldots, x_n | \theta_A) = \theta_A^{\sum_i x_i} (1 - \theta_A)^{n - \sum_i x_i}, \quad i = 1, \ldots, n,
\]

is the likelihood function. The prior information about probability \(\theta_A \) of success determined by:

\[
p(\theta_A) = \frac{\theta_A^{a-1} (1 - \theta_A)^{b-1}}{B(a,b)}, \quad 0 \leq \theta_A \leq 1,
\]

is Beta distribution with parameters \((a, b)\).

According to Bayes’ theorem, the posterior distribution for probability \(\theta_A \) of success is given by

\[
p(\theta_A | x_1, x_2, \ldots, x_n) = \frac{p(\theta_A) p(x_1, x_2, \ldots, x_n | \theta_A)}{\int_0^1 p(\theta_A) p(x_1, x_2, \ldots, x_n | \theta_A) d\theta_A},
\]

\[
p(\theta_A | x_1, x_2, \ldots, x_n) = \frac{\theta_A^{\sum_i x_i} (1 - \theta_A)^{n - \sum_i x_i}}{B(a + \sum_i x_i, b + n - \sum_i x_i)},
\]

consequently, the posterior distribution for probability \(\theta_A \) of success in group A is Beta distribution with parameters \((\tilde{a}, \tilde{b})\):

\[
p(\theta_A | x_1, x_2, \ldots, x_n) = \frac{\theta_A^{\tilde{a}-1} (1 - \theta_A)^{\tilde{b}-1}}{B(\tilde{a}, \tilde{b})},
\]

where

\[
\tilde{a} = a + \sum_{i=1}^n x_i, \quad \tilde{b} = b + n - \sum_{i=1}^n x_i.
\]

The posterior distribution for probability \(\theta_B \) of success in group B is Beta distribution with parameters \((\tilde{c}, \tilde{d})\):

\[
p(\theta_B | y_1, y_2, \ldots, y_n) = \frac{\theta_B^{\tilde{c}-1} (1 - \theta_B)^{\tilde{d}-1}}{B(\tilde{c}, \tilde{d})},
\]

where

\[
\tilde{c} = c + \sum_{i=1}^n y_i, \quad \tilde{d} = d + n - \sum_{i=1}^n y_i.
\]
The posterior distribution for probability θ_C of success in group C is Beta distribution with parameters (\bar{e}, \bar{f}):

$$p(\theta_C|z_1, z_2, \ldots, z_n) = \frac{\theta_C^{n-1}(1-\theta_C)^{i-1}}{B(\bar{e}, \bar{f})},$$

where

$$\bar{e} = e + \sum_{i=1}^n z_i, \quad \bar{f} = f + n - \sum_{i=1}^n z_i.$$

3. **Expected loss $EL(\theta_A, \theta_B, \theta_C)$**

The loss function $L(\theta_A, \theta_B, \theta_C)$ describes the loss under decision making about choosing landing page variant which can be published on website. The loss functions are

$$L(\theta_A, \theta_B, \theta_C, A) = \max\{\theta_B - \theta_A, \theta_C - \theta_A, 0\},$$

$$L(\theta_A, \theta_B, \theta_C, B) = \max\{\theta_A - \theta_B, \theta_C - \theta_B, 0\},$$

$$L(\theta_A, \theta_B, \theta_C, C) = \max\{\theta_A - \theta_C, \theta_B - \theta_C, 0\}$$

for group A, B and C, respectively [12].

The expected value of the loss function is computed analytically in this section. The expected loss for group A is determined by:

$$EL(\theta_A, \theta_B, \theta_C, A) = \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} L(x, y, z, A) p(x, y, z) dx dy dz,$$

where $p(x, y, z)$ is the joint density of $\theta_A, \theta_B, \theta_C$.

By definition of the loss function for group A, we have

$$EL(\theta_A, \theta_B, \theta_C, A) =$$

$$= \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} (y-x) x^{a-1}(1-x)^{b-1} y^{c-1}(1-y)^{d-1} z^{e-1}(1-z)^{f-1} \frac{1}{B(a,b)} \frac{1}{B(c,d)} \frac{1}{B(e,f)} dz +$$

$$+ \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} (z-x) x^{a-1}(1-x)^{b-1} y^{c-1}(1-y)^{d-1} z^{e-1}(1-z)^{f-1} \frac{1}{B(a,b)} \frac{1}{B(c,d)} \frac{1}{B(e,f)} dz +$$

$$+ \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} (z-x) x^{a-1}(1-x)^{b-1} y^{c-1}(1-y)^{d-1} z^{e-1}(1-z)^{f-1} \frac{1}{B(a,b)} \frac{1}{B(c,d)} \frac{1}{B(e,f)} dz.$$

The expected value of the loss function for group A has the following form:

$$EL(\theta_A, \theta_B, \theta_C, A) =$$

$$= \frac{B(c+1,d)}{B(c,d)}(1-h(a,b,c+1,d)) - \frac{B(a+1,b)}{B(a,b)}(1-h(a+1,b,c,d)) -$$
\[
\begin{align*}
&- \frac{B(c+1,d)}{B(c,d)} \sum_{i=0}^{c-1} \frac{B(c+1+i,d+f)}{(f+i)B(1+i,f)B(c+1,d)}(1-h(a,b,c+i+1,d+f)) + \\
&+ \frac{B(a+1,b)}{B(a,b)} \sum_{i=0}^{c-1} \frac{B(a+1+i,b+f)}{(i+f)B(1+i,f)B(a+1,b)}(1-h(a+1+i,b+f,c,d)) + \\
&+ \frac{B(e+1,f)}{B(e,f)} \sum_{i=0}^{c-1} \frac{B(c+i,d+f)}{(i+f)B(1+i,f)B(c,d)}(1-h(a,b,c+i,d+f)) - \\
&- \frac{B(e+1,f)}{B(e,f)} \sum_{i=0}^{c-1} \frac{B(a+i,b+f)}{(i+f)B(1+i,f)B(a,b)}(1-h(a+i,b+f,c,d)) + \\
&+ \frac{B(a+1,b)}{B(a,b)} \sum_{i=0}^{c-1} \frac{B(c+i,d+f)}{(i+f)B(1+i,f)B(c,d)}(1-h(a+1,b,c+i,d+f)).
\end{align*}
\]

where the function \(h \) is equal to:

\[
h(a,b,c,d) = 1 - \sum_{i=0}^{c-1} \frac{B(a+i,b+d)}{(d+i)B(1+i,d)B(a,b)}.
\]

Expected loss for group B is determined by:

\[
EL(\theta_A, \theta_B, \theta_C, B) = \iiint_{0,0,0}^{x,y,z} L(\theta_A, \theta_B, \theta_C, B) p(x,y,z) dx dy dz,
\]

where \(p(x,y,z) \) is the joint density of \(\theta_A, \theta_B, \theta_C \).

By definition of the loss function for group B, we have

\[
EL(\theta_A, \theta_B, \theta_C, B) = \\
= \int_{0}^{x} \int_{0}^{x} \int_{0}^{x} (x-y) \frac{x^{a-1}(1-x)^{b-1}}{B(a,b)} y^{c-1}(1-y)^{d-1} z^{e-1}(1-z)^{f-1} \frac{dz}{B(c,d) B(e,f)} dx dy + \\
+ \int_{0}^{x} \int_{0}^{x} \int_{x}^{1} (z-y) \frac{x^{a-1}(1-x)^{b-1}}{B(a,b)} y^{c-1}(1-y)^{d-1} z^{e-1}(1-z)^{f-1} \frac{dz}{B(c,d) B(e,f)} dx dy + \\
+ \int_{0}^{x} \int_{y}^{1} \int_{0}^{1} (z-y) \frac{x^{a-1}(1-x)^{b-1}}{B(a,b)} y^{c-1}(1-y)^{d-1} z^{e-1}(1-z)^{f-1} \frac{dz}{B(c,d) B(e,f)} dx dy.
\]

Expected value of the loss function for group B has the following form:
where the function h is equal to:

$$h(a, b, c, d) = 1 - \sum_{i=0}^{c-1} \frac{B(a + i, b + d)}{(d + i) B(1 + i, d) B(a, b)}.$$

The expected loss for group C is determined by:

$$EL(\theta_A, \theta_B, \theta_C, C) = \iint \int_{0,0,0} L(\theta_A, \theta_B, \theta_C, C) p(x, y, z) dx dy dz,$$

where $p(x, y, z)$ is the joint density of $\theta_A, \theta_B, \theta_C$.

By definition of the loss function for group C, we have

$$EL(\theta_A, \theta_B, \theta_C, C) =$$

$$= \int_{0}^{1} dx \int_{0}^{1} dy \int_{0}^{1} (x - z)^{a-1} (1 - x)^{b-1} (1 - y)^{d-1} (1 - z)^{e-1} (1 - y)^{f-1} z^{-1} B(a, b) B(c, d) B(e, f) dz +$$
\[+ \frac{1}{dx} \int_{0}^{x} \frac{1}{dy} \int_{0}^{y} (y-z) \frac{x^{a-1} (1-x)^{b-1}}{B(a,b)} \frac{y^{c-1} (1-y)^{d-1}}{B(c,d)} \frac{z^{e-1} (1-z)^{f-1}}{B(e,f)} \, dz. \]

The expected value of the loss function for group C has the following form:

\[
EL(\theta_{A}, \theta_{B}, \theta_{C}) = B(a+1, b) \frac{h(a+1, b, c, d)}{B(a, b)} - B(a+1, b) \frac{1-h(a+1, b, e, f)}{B(a, b)} + \frac{B(a+1, b) e^{-1}}{B(a, b)} \sum_{i=0}^{e} \frac{B(a+i+1, b+f)}{(i+f) B(i+1, f) B(a, b)} \left(1-h(a+i+1, b+f, c, d)\right) - \frac{B(e+1, f)}{B(e, f)} \left(1-h(a, b, c+1, d)\right) + \frac{B(e+1, f)}{B(e, f)} \left(1-h(a, b, e+1, f)\right) - \frac{B(e+1, f)}{B(e, f)} \sum_{i=0}^{e} \frac{B(a+i, b+f)}{(i+f) B(i+1, f) B(a, b)} \left(1-h(a+i, b+f, c, d)\right) - \frac{B(c+1, d)}{B(c, d)} \sum_{i=0}^{c} \frac{B(c+i, d+f)}{(f+i) B(1+i, f) B(c, d)} \left(1-h(a, b, c+i+1, d+f)\right) + \frac{B(e+1, f)}{B(e, f)} \sum_{i=0}^{c} \sum_{j=0}^{c-i-1} \frac{B(a+i, b+f)}{(i+f) B(i+1, f) B(a, b)} \left(1-h(a+i, b+f, c, d)\right),
\]

where the function \(h \) is equal to:

\[
h(a, b, c, d) = 1 - \sum_{i=0}^{c-i-1} \frac{B(a+i, b+d)}{(d+i) B(1+i, d) B(a, b)}.
\]

The foregoing results for three groups of visitors A, B, C can be easily converted into results for two groups. The expected value of the loss function for group A has the following form:

\[
EL(\theta_{A}, \theta_{B}, A) = B(c+1, d) \frac{1-h(a, b, c+1, d)}{B(c, d)} - B(a+1, b) \frac{1-h(a+1, b, c, d)}{B(a, b)}
\]

and expected value of the loss function for group B has the following form:

\[
EL(\theta_{A}, \theta_{B}, B) = B(a+1, b) \frac{h(a+1, b, c, d)}{B(a, b)} - B(c+1, d) \frac{h(a, b, c+1, d)}{B(c, d)}.
\]

4. Bayesian testing implementation

Landing page variants A, B, C are suggested viewing for the first, second and third group of visitors. We need to identify users during testing for clear experiment and suggest them the same landing page variant that they have viewed earlier in case of repeated visits. The flow of visitors has been simulated. Each visitor can belong to the first, second and third group with probability 1/3. Visitor behavior is simulated after identification of visitor belonging to group. Visitor
behavior is determined with two outcomes: success – conversion action is done, failure – conversion action isn’t done. If visitor belongs to the first group, success will happen with probability θ_A, and if visitor belongs to the second group, success will happen with probability θ_B, and if visitor belongs to the third group, success will happen with probability θ_C. Prior information about unknown distribution for probabilities θ_A, θ_B and θ_C of success is defined with Beta distribution with parameters $a = 1, b = 1$ and $c = 1, d = 1$, and $e = 1, f = 1$, respectively.

According to Bayes’ theorem, posterior distribution for probability θ_A of success is Beta-distribution with (\tilde{a}, \tilde{b}) parameters:

$$\tilde{a} = a + x_i, \quad \tilde{b} = b + (1 - x_i),$$

where x_i is number of successes in one trial ($x_i = 0, 1$), the posterior distribution for probability θ_B of success is Beta-distribution with (\tilde{c}, \tilde{d}) parameters:

$$\tilde{c} = c + y_i, \quad \tilde{d} = d + (1 - y_i),$$

where y_i is number of successes in one trial ($y_i = 0, 1$), the posterior distribution for probability θ_C of success is Beta-distribution with (\tilde{e}, \tilde{f}) parameters:

$$\tilde{e} = e + z_i, \quad \tilde{f} = f + (1 - z_i),$$

where z_i is number of successes in one trial ($z_i = 0, 1$).

Expected loss $L(\theta_A, \theta_B, \theta_C)$ compares with threshold of loss ε after each visit of landing page variant A, B, C. If

$$EL(\hat{\theta}_A, \hat{\theta}_B, \hat{\theta}_C, A) \leq \varepsilon, \quad EL(\hat{\theta}_A, \hat{\theta}_B, \hat{\theta}_C, B) > \varepsilon, \quad EL(\hat{\theta}_A, \hat{\theta}_B, \hat{\theta}_C, C) > \varepsilon,$$

then testing will be stopped, landing page variant A will be chosen for publishing on website, if

$$EL(\hat{\theta}_A, \hat{\theta}_B, \hat{\theta}_C, A) > \varepsilon, \quad EL(\hat{\theta}_A, \hat{\theta}_B, \hat{\theta}_C, B) \leq \varepsilon, \quad EL(\hat{\theta}_A, \hat{\theta}_B, \hat{\theta}_C, C) > \varepsilon,$$

then testing will be stopped, landing page variant B will be chosen for publishing on website, if

$$EL(\hat{\theta}_A, \hat{\theta}_B, \hat{\theta}_C, A) > \varepsilon, \quad EL(\hat{\theta}_A, \hat{\theta}_B, \hat{\theta}_C, B) > \varepsilon, \quad EL(\hat{\theta}_A, \hat{\theta}_B, \hat{\theta}_C, C) \leq \varepsilon,$$

then testing will be stopped, landing page variant C will be chosen for publishing on website [12].

Likelihood that probability of success in one group is greater than the probability of success in another two groups is defined by (see [13])

$$P\{\theta_A > \max\{\theta_B, \theta_C\}\} = 1 - P\{\theta_B > \theta_A\} - P\{\theta_C > \theta_A\} +$$

$$+ \sum_{i=0}^{c-1} \sum_{j=0}^{c-1} \frac{B(i + j + a, b + d + f)}{(d + i)(f + j)B(1 + i, d)B(1 + j, f)B(a, b)},$$
5. Bayesian testing results

Minimally-informative prior densities are shown in Figure 1. Prior densities for probability $\theta_A, \theta_B, \theta_C$ of success are represented with blue, red and green color, respectively. Likelihoods that probability of success in one group is greater than the probabilities of success in two other groups are equal to

$$P\{\hat{\theta}_B \leq \max\{\hat{\theta}_A, \hat{\theta}_C\}\} = P\{\hat{\theta}_C \leq \max\{\hat{\theta}_A, \hat{\theta}_B\}\} = P\{\hat{\theta}_A \geq \max\{\hat{\theta}_B, \hat{\theta}_C\}\} = 0.33.$$

Bayesian testing results on several iterations are considered. On 21st iteration posterior density for probability θ_A of success (Beta-distribution with $a = 7, b = 3$ parameters) is represented with blue color, posterior density for probability θ_B of success (Beta-distribution with $c = 6, d = 2$ parameters) is represented with red color, posterior density for probability θ_C of success (Beta-distribution with $e = 3, f = 5$ parameters) is represented with green color (see Fig. 2). Bayesian estimators for probabilities $\theta_A, \theta_B, \theta_C$ of success are equal to

$$\hat{\theta}_A = 0.75; \hat{\theta}_B = 0.83; \hat{\theta}_C = 0.33.$$

Likelihoods that probability of success in one group is greater than the probabilities of success in two other groups are equal to

$$P\{\hat{\theta}_A \geq \max\{\hat{\theta}_B, \hat{\theta}_C\}\} = 0.39,$$

$$P\{\hat{\theta}_B \geq \max\{\hat{\theta}_A, \hat{\theta}_C\}\} = 0.60,$$

$$P\{\hat{\theta}_C \geq \max\{\hat{\theta}_A, \hat{\theta}_B\}\} = 0.01.$$

On 39th iteration posterior density for probability θ_A of success (Beta-distribution with $a = 13, b = 6$ parameters) is represented with blue color, posterior density for probability θ_B of success (Beta-distribution with $c = 10, d = 2$ parameters) is represented with red color, posterior density for probability θ_C of success (Beta-distribution with $e = 3, f = 10$ parameters) is represented with
green color (see Fig. 4). Bayesian estimators for probabilities $\hat{\theta}_A, \hat{\theta}_B, \hat{\theta}_C$ of success are equal to

$$\hat{\theta}_A = 0.70; \hat{\theta}_B = 0.90; \hat{\theta}_C = 0.18.$$

Likelihoods that probability of success in one group is greater than the probabilities of success in two other groups are equal to

$$P\{\hat{\theta}_A > \max\{\hat{\theta}_B, \hat{\theta}_C\}\} = 0.151,$$
$$P\{\hat{\theta}_B > \max\{\hat{\theta}_A, \hat{\theta}_C\}\} = 0.848,$$
$$P\{\hat{\theta}_C > \max\{\hat{\theta}_A, \hat{\theta}_B\}\} = 0.001.$$

![Fig. 1. Prior densities for probabilities $\theta_A, \theta_B, \theta_C$ of success](image)

On 60th iteration posterior density for probability θ_A of success (Beta-distribution with $\bar{a} = 16, \bar{b} = 9$ parameters) is represented with blue color, posterior density for probability θ_B of success (Beta-distribution with $\bar{c} = 14, \bar{d} = 2$ parameters) is represented with red color, posterior density for probability θ_C of success (Beta-distribution with $\bar{e} = 7, \bar{f} = 17$ parameters) is represented with green
color (see Fig. 5). Bayesian estimators for probabilities $\hat{\theta}_A, \hat{\theta}_B, \hat{\theta}_C$ of success are equal to $\hat{\theta}_A = 0.65; \hat{\theta}_B = 0.93; \hat{\theta}_C = 0.27$.

\[
P(\hat{\theta}_B > \max\{\hat{\theta}_A, \hat{\theta}_C\}) = 0.6
\]

Fig. 2. Posterior densities for probabilities $\theta_A, \theta_B, \theta_C$ of success on 21st iteration

\[
P(\hat{\theta}_B > \max\{\hat{\theta}_A, \hat{\theta}_C\}) = 0.78
\]

Fig. 3. Posterior densities for probabilities $\theta_A, \theta_B, \theta_C$ of success on 30th iteration
Fig. 4. Posterior densities for probabilities $\theta_A, \theta_B, \theta_C$ of success on 39th iteration

$$P(\theta_B > \max(\theta_A, \theta_C)) = 0.85$$

Fig. 5. Posterior densities for probabilities $\theta_A, \theta_B, \theta_C$ of success on 60th iteration

$$P(\theta_B > \max(\theta_A, \theta_C)) = 0.97$$
Fig. 6. Expected loss $L(\theta_A, \theta_B, \theta_C, \cdot)$ on each iteration

Likelihoods that probability of success in one group is greater than the probabilities of success in two other groups are equal to

\[
P\left(\hat{\theta}_A > \max\{\hat{\theta}_B, \hat{\theta}_C\}\right) = 0.03,
\]

\[
P\left(\hat{\theta}_B > \max\{\hat{\theta}_A, \hat{\theta}_C\}\right) = 0.97,
\]

\[
P\left(\hat{\theta}_C > \max\{\hat{\theta}_A, \hat{\theta}_B\}\right) = 9.65 \cdot 10^{-6}.
\]

Testing has been finished with expected loss:

\[
EL\left(\hat{\theta}_A, \hat{\theta}_B, \hat{\theta}_C, A\right) = 0.251, \quad EL\left(\hat{\theta}_A, \hat{\theta}_B, \hat{\theta}_C, B\right) = 0.002, \quad EL\left(\hat{\theta}_A, \hat{\theta}_B, \hat{\theta}_C, C\right) = 0.585.
\]

6. Conclusion

We proposed a Bayesian A/B/C testing implementation with the expected value of the loss function computed analytically. A/B/C testing procedure has several advantages over the multivariate testing. A/B/C testing can be used when we have enough traffic for A/B/C test, but not for a multivariate test. A/B/C testing should be used when we wanted to improve element on a website that may have multiple versions: A, B, C. A/B/C must be used to answer the question ”what is probability that landing page variant A is better than landing page variants B and C?”
Bayesian A/B/C testing can easily be converted into Bayesian A/B testing with a closed-form solution.

References

Received 17.09.2019.